Math 5A Q4 2.2, 2.3
20 points
Key points from section:
Simplify $f^{\prime}(x)$ includes:
No complex fractions, No negative exponents, Combine fractions
Label $f(x), f^{\prime}(x)$
Notice, you can check your answers to derivatives using online apps, but that may not replace your work.
(1) The graphs below are of a function and its derivative. Clearly label which is $f(x)$ and which is $f^{\prime}(x)$

2) Differentiate the following functions and simplify (4 points)
a) $f(x)=5 x^{3}+3 x^{2}-5 x+2$
b) $y=\frac{3 x^{2}}{2 x+1}$
quotient Rule
$f^{\prime}(x)=15 x^{2}+6 x-5$
$y^{\prime}=\frac{(2 x+1) 6 x-3 x^{2}(2)}{(2 x+1)^{2}}$

$$
y^{\prime}=\frac{6 x^{2}+6 x}{(2 x+1)^{2}}
$$

3) Students often make these simple derivatives harder than necessary. How would you differentiate these?
(2.3 video 2 @35:30)
(1 points each for correct answer, 1 point each for efficient approach)

$$
\begin{aligned}
& \text { a) } f(x)=\frac{5}{x}=5 x^{-1} \\
& f^{\prime}(x)=-5 x^{-2} \\
& f^{\prime}(x)=\frac{-5}{x^{2}}
\end{aligned}
$$

b) $f(x)=\frac{2 x}{3}=\frac{2}{3} \mathrm{X}$
c) $f(x)=x^{5}\left(5 x^{3}+\frac{3}{x}\right)$

$$
f^{\prime}(x)=\frac{2}{3}
$$

$$
\begin{aligned}
& f(x)=5 x^{8}+3 x^{4} \\
& f^{\prime}(x)=40 x^{2}+12 x^{3}
\end{aligned}
$$

Using the function $y=f(x)=x^{2}$, state which of the following uses of the notation: $\frac{d y}{d x}$ and $\frac{d}{d x}$ are correct and which are incorrect. (See 2.3 video 1@11:45) (3 points)
a) $\frac{d y}{d x}=2 x$ correct
c) $f^{\prime}(a)=2 x$ incorrect
e) $\frac{d}{d x}\left(x^{2}\right)=2 x$ correct
b) $\frac{d u}{d x}\left(x^{2}\right)=2 x$ incorrect
d) $\frac{d}{d x}=2 x$ incorrect
e) $\frac{d}{d d}\left(x^{2}\right)=0$ correct
$\frac{1}{4}\left(x^{2}\right)=0$ cor rect
$N_{n}{ }^{n}$ notice the differant-vanables
3) Find the equation of the tangent line to $f(x)=\sqrt[3]{x}-6 x^{4 / 3}$ when $\mathrm{x}=8$. (5 points)

Need Point

$$
\begin{aligned}
f(8) & =\sqrt[3]{8}-6(2)^{4 / 3} \\
& =2-6 \cdot 2^{4}=2-96=-94
\end{aligned}
$$

$$
\text { point }(8,-94)
$$

$f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}-8 x^{1 / 3}=\frac{1}{3 x^{2 / 3}}-8 x^{1 / 3}$

$$
\begin{aligned}
M=f^{\prime}(8) & =\frac{1}{3 \cdot 9^{2 / 3}}-8 \cdot 8^{1 / 3} \\
& =\frac{1}{12}-16=\frac{-191}{12}
\end{aligned}
$$

Line: $\quad y-y_{0}=m\left(x-x_{0}\right)$

$$
y+94=\frac{-191}{12}(x-8)
$$

